новости разведки

новости генетика

тема недели

интересное о предках

новое о динозаврах

ботаника

статьи Соколова Д.Б.

зоология

юриспруденция

биографии великие

словарь терминов

Юмор

каталог сайтов

друзья

новости сайта

награды сайта

биннеры сайта

об авторе

 

 

 

 

Случай Дмитрия Барановского рассмотрели корреспонденты и общественность

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Каатинга: сухой листопадный тропический лес или редколесье, образованные колючими деревьями и кустарниками; занимает обширные пространства во внутренних районах Северо-восточной Бразилии.

Каллюc: новообразование на раневой поверхности растения в виде опробковевающей ткани, возникает в результате деления пограничных с раной клеток. Каллюсная ткань способствует зарастанию ран, срастанию прививок и т.д.

Кислотность почвы: реакция почвы (рН) может быть кислой, нейтральной и щелочной.

Клейстогамные цветки: цветки, нераскрывающиеся во время цветения, способные давать нормальные семена в результате самоопыления и самооплодотворения.

Колючки: видоизмененные почечные чешуи, располагающиеся в ареолах пучком по несколько или помногу. По расположению различают центральные колючки – более длинные, крепкие, иногда с крючочком на конце, и радиальные – более тонкие, многочисленные.

Кристатная, или гребенчатая, форма: уродливое разрастание стебля, при котором его верхушка уплощается, разрастается в стороны, приобретая часто форму петушиного гребня.

Ксерофиты: растения сухих мест обитания, способные переживать продолжительный период засухи.

Кутикула: прозрачный бесструктурный слой воскоподобного вещества кутана, лежащий поверх эпидермиса; обладает водоотталкивающим свойством, служит для защиты от испарения и ожогов солнечными лучами.

Клеточный сок вакуолей- водянистая жидкость с pH 2-5, содержит растворенные в воде органические и неорганические слои (фосфаты, окса- литы и.т.п) сахара, аминокислоты, белки, конечные и ток- сичные продукты объмеа веществ (таннины, гликозиды, алкалоиды), некоторые пигменты (например, антоцианы). Функции вакуолей: регуляция водно-солевого обмена, поддержание тургорного давления в клетке, накопление низкомолекулярных водорастворимых метаболитов, запасных веществ и выведение из обмена токсичных веществ.

КАМБИАЛЬНЫЕ КЛЕТКИ,1) то же, что стволовые клетки. 2) Клетки камбия.

КАРИОПЛАЗМА (от карио... и плазма) (ядерный сок), содержимое клеточного ядра, заполняющее пространство между его структурами

КАРМИН (франц. carmin, от араб. кирмиз кошениль и лат. minium киноварь), красный краситель, добываемый из тел бескрылых самок насекомых кошенили. Используется для окраски гистологических препаратов, как пищевой и парфюмерный краситель.

КЛЕТКА, элементарная живая система, основа строения и жизнедеятельности всех животных и растений. Клетки существуют как самостоятельные организмы (напр., простейшие, бактерии) и в составе многоклеточных организмов, в которых имеются половые клетки, служащие для размножения, и клетки тела (соматические), различные по строению и функциям (напр., нервные, костные, мышечные, секреторные). Размеры клетки варьируют в пределах от 0,1-0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).

У человека в организме новорожденного ок. 2·1012. В каждой клетке различают 2 основные части: ядро и цитоплазму, в которой находятся органоиды и включения. Клетки растений, как правило, покрыты твердой оболочкой. Наука о клетке цитология.

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ, конструирование специальными методами клеток нового типа. Клеточная инженерия включает реконструкцию жизнеспособной клетки из отдельных фрагментов разных клеток, объединение целых клеток, принадлежавших различным видам (и даже относящихся к разным царствам растениям и животным), с образованием клетки, несущей генетический материал обеих клеток, и другие операции. Клеточная инженерия используется для решения теоретических проблем в биотехнологии, для создания новых форм растений, обладающих полезными признаками и одновременно устойчивых к болезням и т. п.

КЛЕТОЧНАЯ ТЕОРИЯ, одно из крупных биологических обобщений, утверждающее общность происхождения, а также единство принципа строения и развития организмов; согласно клеточной теории, их основной структурный элемент клетка. Клеточная теория впервые сформулирована Т. Шванном (1838-39). Современная биология рассматривает многоклеточный организм в его расчлененности на клетки и целостности, основанной на межклеточных взаимодействиях

КОЛЛАГЕНОВЫЕ ВОЛОКНА, волокна внеклеточного вещества соединительной ткани животных и человека, состоящие главным образом из белка коллагена, образующегося в фибробластах. Прочны на разрыв и мало эластичны; выполняют механическую функцию.

КОСТЬ, основной элемент скелета позвоночных животных и человека. Костная ткань разновидность соединительной ткани; состоит из клеток и плотного межклеточного вещества, содержащего соли кальция и белки (главным образом коллаген) и обеспечивающего ее твердость и эластичность. Вместе с суставами, связками и мышцами, прикрепленными к кости сухожилиями, образует опорно-двигательный аппарат. В течение жизни кость перестраивается: разрушаются старые клетки, развиваются новые. После переломов кость регенерирует путем деления клеток надкостницы.

КРОВЬ, жидкая ткань, циркулирующая в кровеносной системе позвоночных животных и человека. Состоит из плазмы и форменных элементов (эритроциты, лейкоциты, тромбоциты и др.). Красный цвет крови придает гемоглобин, содержащийся в эритроцитах. Кровь характеризуется относительным постоянством химического состава, осмотического давления и активной реакции (pH). Переносит кислород от органов дыхания к тканям и углекислый газ от тканей к органам дыхания, доставляет питательные вещества из органов пищеварения к тканям, а продукты обмена к органам выделения, участвует в регуляции водно-солевого обмена и кислотно-щелочного равновесия в организме, в поддержании постоянной температуры тела. Благодаря наличию в крови антител, антитоксинов и лизинов, а также способности лейкоцитов поглощать микроорганизмы и инородные тела кровь выполняет защитную функцию. У человека в среднем 5,2 л крови (у мужчин) и 3,9 л (у женщин). В 1 мм3 крови 3,9-5,0 млн. эритроцитов, 4-9 тыс. лейкоцитов, 180-320 тыс. тромбоцитов; гемоглобина ок. 13-16 г в 100 мл.

КРОВЯНЫЕ ПЛАСТИНКИ, безъядерные тельца крови млекопитающих животных и человека, участвуют в свертывании крови. Часто кровяные пластинки называют тромбоцитами.

КУЛЬТУРА ТКАНИ (эксплантация), длительное сохранение и выращивание в специальных питатательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных или растений. Применяется в биологии для изучения тканей, онтогенеза; лежит в основе клеточной инженерии одного из важнейших методов современной биотехнологии.

КУЛЬТУРА ТКАНИ (эксплантация), метод длительного сохранения и выращивания в специальных питательных среда клеток, тканей, небольших органов или их частей, выделенных из организма человека, животных и растений. Основан на методах выращивания культуры микроорганизмов, обеспечивающих асептику, питание, газообмен и удаление продуктов обмена культивируемых объектов. Одно из преимуществ метода тканевых культур возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа.

Животные ткани

Первые опыты по культуре животных тканей были проведены немецким биологом В. Ру, которому удалось в 1885 в течение нескольких дней поддерживать развитие нервной пластинки (зачатка центральной нервной системы) куриного эмбриона в теплом солевом растворе. Однако лишь предложенная американским биологом Р. Гаррисоном в 1907 воспроизводимая техника послужила основой для развития этого метода. Культивируя в сгустках лимфы небольшие кусочки нервной трубки эмбриона лягушки, он через несколько недель наблюдал образование нервных волокон. Французский хирург и патофизиолог А. Каррель, сумевший в течение 34 лет сохранять у штамма клеток сердца куриного эмбриона способность к активным делениям, доказал таким образом, что животные клетки могут неограниченно долго расти в культуре in vitro (то есть в пробирке, в искусственных условиях).

Животные клетки выращивают in vitro либо прикрепленными к подходящей подложке, либо суспендированными в жидких питательных средах. Для масштабного выращивания клеток используют реакторы для промышленного культивирования микроорганизмов. Различают 3 типа культуры клеток: первичные культуры, получаемые практически из любого органа и существующие лишь до первого пересева; диплоидные культуры (см. диплоид), чаще получаемые из эмбриональных тканей и сохраняющие до 50 пересевов диплоидный набор хромосом, которые затем трансформируются в постоянные (перевиваемые) гетероплоидные культуры, существующие вне организма десятки лет. В отличие от культуры клеток, задачей культуры органов, осуществляемой с применением жидких или твердых сред в стеклянных капиллярах, на покровных стеклах и нитроцеллюлозных фильтрах, на агаре и т. п., является сохранение нормальной структуры тканей и нормального их развития.

Культуру животных тканей применяют для изучения механизмов роста и дифференцировки клеток, гистогенеза, межтканевых и межклеточных взаимодействий, обмена веществ и т. п. Культуры животных клеток являются важными продуцентами многих клеточных продуктов, например, противовирусного агента интерферона. На них выращивают вирусы для их идентификации и получения вакцин. Клеточные культуры часто применяют при тестировании и изучении механизма действия лекарственных и косметических средств, пестицидов, консервантов и т. п. Методы культуры клеток нашли широкое применение для реконструкции различных тканей и органов. Так, культура клеток кожи используется для заместительной терапии при ожогах, культура клеток эндотелия для реконструкции стенок сосудов. Способность клеток к росту в культуре привела к развитию методов клонирования (см. клон), хранения и слияния клеток (см. клеточная инженерия), что, в свою очередь, вызвало становление новой области науки генетики соматических клеток (см. сома). Органные культуры используются при изучении закономерностей развития органов, для изучения способов сохранения жизнеспособности изолированных органов, предназначенных для трансплантации.

Растительные ткани

Идея о возможности культивирования растительных клеток была высказана еще в конце 19 начале 20 вв. немецкими учеными Х. Фехтингом (1892), С. Рехингером (1893) и Г. Габерландтом (1902). Однако лишь в 1922 американскому исследователю В. Роббинсу удалось в течение нескольких недель культивировать корневые меристемы томатов. Начало же успешному развитию метода культуры клеток и тканей растений положили работы Р. Готре (Франция) и Ф. Уайта (США), показавших в 30-е годы способность каллюсных культур (см. каллюс) к неограниченному росту. Американский ученый Ф. Стюард, работая с культурой изолированной флоэмы моркови, получил из нее в 1958 целые растения. Значительный вклад в развитие культуры клеток и тканей растений в нашей стране внесли исследования Р. Г. Бутенко и ее сотрудников, использовавших эти методы для изучения физиологии растительных клеток и морфогенеза растений.

Культивирование растительных клеток и тканей in vitro проводят на агаризованных либо жидких питательных средах, содержащих в качестве одного из основных компонентов фитогормоны. Разработаны способы выращивания отдельных клеток. Изменяя условия культивирования, прежде всего концентрацию и соотношение различных гормонов, можно либо длительно поддерживать неорганизованный рост каллюсной ткани, либо индуцировать в ней образование различных органов. Клетка из практически любой ткани растения, в отличие от животной клетки, способна в условиях in vitro к делению и дифференцировке с последующим формированием целого растения (см. тотипотентность). Важным этапом в развитии методов культуры клеток растений явилась разработка в 1960 профессором Ноттингемского университета Э. Коккингом (Великобритания) метода ферментативного изолирования протопластов, которые оказались способными в асептической культуре к регенерации в целое растение. Изолированные протопласты, по выражению американского исследователя А. Галстона, вывели растительную клетку из «деревянной тюрьмы» и открыли перспективы различных манипуляций с ней клеточной инженерии.

  К Оглавлению

Сайт создан в системе uCoz